
BoldDesk Help desk software offering ticketing, live chat, and omnichannel support, starting at $49/mo. for 10 agents. Try it for free. Sign in to Syncfusion

Best Practices for JWT Authentication in Angular Apps

Pradeep Kumar • 10 min read • Nov 20, 2024 • Updated • 26 Comments

TL;DR: Shield your Angular apps with JWT authentication! Unveils secure

storage practices, route protection with guards, and interceptor-based token

injection for seamless API calls – empowering robust user authentication.

Unlock best practices for JWT in Angular and fortify your app’s security.

Data without security is like a treasure box without a lock. In this tech-driven world,

hackers are everywhere. To transmit your data’s securely, you need highly reliable

standards. Considering this, JSON Web Tokens (JWT) provide the best security and

authentication.

Angular is a widely used JavaScript platform. In this blog, we are going to see how to

implement authenticated routings in Angular, manage tokens, and pass tokens to

servers in client side. For logins, you can use any kind of authentication like OpenID,

OAuth, or create your own login application logic.

This blog covers the following topics:

What is JWT?

What are the possibilities of storing JWT authentication tokens in Angular apps?

Where can tokens be stored securely in Angular apps?

How to create a service to access JWT tokens and storage?

How to protect Angular routing with stored JWT tokens?

How to pass a JWT token for every API request?

What is JWT?

JSON Web Tokens (JWT) are an internet standard for creating JSON-based access tokens

that assert a number of claims. We can generate JWT with custom claims that may

contain user information and permission-based values, information like whether the

user is an admin can also be stored in JWT. Best practice is to not store any confidential

information in JWT. Please refer to jwt.io for detailed information about JWT.

Note: An Angular project can be created using Angular CLI commands. Please refer to

the Angular CLI command documentation for more information on how to create a

project.

Syncfusion Angular component suite is the

only suite you will ever need to develop an

Angular application faster.

Explore Now

What are the ways to store authentication tokens in Angular

apps?

There are three possible ways of storing access tokens in an Angular app. They are:

In-memory storage

HTML5 web storage

Cookie storage

In-memory storage

In this technique, a token is stored in the application page itself. The only drawback of

this option is the data is not persistent; it is lost on page refresh and must be retrieved

again.

HTML5 web storage (local storage and session storage)

In this technique, data is stored in browser storage. Data stored this way is accessible by

all tabs in the same browser within the same domain. The two types of web storage are:

Session storage: Data stored in session expires once the browser is closed.

Local storage: Data stored in local storage doesn’t expire until we clear the data

from the browser. The server cannot directly access data stored in local storage.

Cookie storage

In this technique, a token is stored in cookies. Data stored this way can be accessed by

the server. The browser automatically appends a cookie in requests sent to the server.

Since the browser automatically adds a cookie on each request, tokens are vulnerable to

CSRF/XSRF attacks.

Find the right property to fit your

requirement by exploring the complete

documentation for Syncfusion’s Angular

components.

Read Now

Where can tokens be stored securely in Angular apps?

We can store data in different ways, but we should take proper measures to protect

tokens against CSRF and XSRF vulnerabilities. We should store tokens in a place that is

not accessible by attackers. Two possible ways of storing tokens to reduce risk of

CSRF/XSRF attack are:

Local storage: One of the best ways to store data. Local storage is not

vulnerable to CSRF attacks.

HttpOnly cookie: HttpOnly cookies are not accessible on the client side, i.e. the

client cannot read data stored in these cookies.

For additional security, we must consider a few more things on the server side, such as:

Token expiration validation.

Content security policy.

Refresh token mechanism.

Anti-forgery token mechanism.

How to create a service to access JWT tokens and storage

Now that we have learned where to store tokens, let’s see how to create an Angular

service to decode stored tokens and retrieve values from them in an Angular app.

JWT token service

This service is used for decoding JWT tokens and retrieving values from JWT. Let’s set one

up.

First, create an Angular service file for JWT decode and inject it in the application module.

We can use the jwt-decode package for decoding JWT tokens. In this service, functions for

getting user claim values like username and email ID have been included. A function has

also been added for checking token expiration in this service.

import { Injectable } from '@angular/core';

import * as jwt_decode from 'jwt-decode';

@Injectable()

export class JWTTokenService {

 jwtToken: string;

 decodedToken: { [key: string]: string };

 constructor() {

 }

 setToken(token: string) {

 if (token) {

 this.jwtToken = token;

 }

 }

 decodeToken() {

 if (this.jwtToken) {

 this.decodedToken = jwt_decode(this.jwtToken);

 }

 }

 getDecodeToken() {

 return jwt_decode(this.jwtToken);

 }

 getUser() {

 this.decodeToken();

 return this.decodedToken ? this.decodedToken.displayname : null;

 }

 getEmailId() {

 this.decodeToken();

 return this.decodedToken ? this.decodedToken.email : null;

 }

 getExpiryTime() {

 this.decodeToken();

 return this.decodedToken ? this.decodedToken.exp : null;

 }

 isTokenExpired(): boolean {

 const expiryTime: number = this.getExpiryTime();

 if (expiryTime) {

 return ((1000 * expiryTime) - (new Date()).getTime()) < 5000;

 } else {

 return false;

 }

 }

}

To store the token, you can use either a cookie or local storage service. Code examples

for implementing the services are provided below. Depending on where you are storing

tokens, cookie or local storage service can be implemented.

Be amazed exploring what kind of

application you can develop using

Syncfusion Angular components.

Try Now

Cookie service

1. Create an Angular service file AppCookieService and inject it in the application

module.

2. Include the get, set, and remove functions to perform cookie operations.

3. Include the functionality to automatically add the cookie on initialization of the

service.

import { Inject, Injectable } from '@angular/core';

@Injectable({

 providedIn: 'root',

 })

export class AppCookieService {

 private cookieStore = {};

 constructor() {

 this.parseCookies(document.cookie);

 }

 public parseCookies(cookies = document.cookie) {

 this.cookieStore = {};

 if (!!cookies === false) { return; }

 const cookiesArr = cookies.split(';');

 for (const cookie of cookiesArr) {

 const cookieArr = cookie.split('=');

 this.cookieStore[cookieArr[0].trim()] = cookieArr[1];

 }

 }

 get(key: string) {

 this.parseCookies();

 return !!this.cookieStore[key] ? this.cookieStore[key] : null;

 }

 remove(key: string) {

 document.cookie = `${key} = ; expires=Thu, 1 jan 1990 12:00:00 UTC; path=/`;

 }

 set(key: string, value: string) {

 document.cookie = key + '=' + (value || '');

 }

}

Local storage service

1. Create an Angular service file LocalStorageService and inject it in the

application module.

2. In this basic local storage, add get, set, and remove functions for performing the

operations.

import { Injectable } from '@angular/core';

@Injectable()

export class LocalStorageService {

 set(key: string, value: string) {

 localStorage.setItem(key, value);

 }

 get(key: string) {

 return localStorage.getItem(key);

 }

 remove(key: string) {

 localStorage.removeItem(key);

 }

}

Syncfusion Angular components are:
Lightweight

Modular

High-performing

Explore Now

How to protect Angular routing with stored JWT tokens

So far, we have learned about JWT tokens, where to store them, and how to access and

pass them to the server using Angular services. Now, we are going to see how to use

these tokens to protect Angular routing.

Before diving into this topic, we have to understand the routing guard canActivate.

{

 path: 'app',

 component: AppComponent,

 canActivate: [AuthorizeGuard]

}

The above routing configuration is protected by the AuthorizeGuard service.

AuthorizeGuard supports ‘Boolean | Promise | Observable’. If the AuthorizeGuard

returns false/Promise reject/Observable error, then routing won’t happen. We need to

resolve the error for the routing configuration to be successful.

AuthorizeGuard service

The guard service in the sample code below checks whether the user is logged in. If the

user is logged in, then it checks whether the token is expired. If both cases are satisfied,

then the routing process will be successful. Otherwise, it will request the login service to

get a new token or redirect the user to a custom login or access denied page.

import { Injectable } from '@angular/core';

import { CanActivate, ActivatedRouteSnapshot, RouterStateSnapshot } from '@angular/rout

import { Observable } from 'rxjs';

import { JWTTokenService } from './jwt-token.service';

import { LocalStorageService } from './storage.service';

import { LoginService } from './login.service';

@Injectable({

 providedIn: 'root'

})

export class AuthorizeGuard implements CanActivate {

 constructor(private loginService: LoginService,

 private authStorageService: LocalStorageService,

 private jwtService: JWTTokenService) {

 }

 canActivate(

 next: ActivatedRouteSnapshot,

 state: RouterStateSnapshot): Observable | Promise | boolean {

 if (this.jwtService.getUser()) {

 if (this.jwtService.isTokenExpired()) {

 // Should Redirect Sig-In Page

 } else {

 return true;

 }

 } else {

 return new Promise((resolve) => {

 this.loginService.signIncallBack().then((e) => {

 resolve(true);

 }).catch((e) => {

 // Should Redirect Sign-In Page

 });

 });

 }

 }

}

Note: In the above code, logInService is used for login resolution purposes only. You can

create your own service to resolve logins.

How to pass a JWT token for every API request

In order to have authenticated calls with APIs, we have to send the authorization token in

every HTTP request being sent to the server so that the server can verify authentication

of the request. It’s difficult to include code to add a token in every place an API call is

made—it causes code duplication. To remedy this, Angular has an interceptor service for

handling all HTTP requests and responses in a single place. By using this interceptor, we

can handle including an authentication token in every API call globally.

How the interceptor works

HttpInterceptor controls all the HTTP requests and responses. Every request and

response comes and goes through this service, so we can easily append custom headers

containing authorization tokens in a single place.

Override HTTP_INTERCEPTORS as shown in the following app module.

{ provide: HTTP_INTERCEPTORS, useClass: UniversalAppInterceptor, multi: true },

HttpInterceptor service

The interceptor intercepts all Angular HTTP requests and adds authorization headers

with the token.

Process of using authorization headers with a token

import { Injectable, Inject, Optional } from ‘@angular/core’;

import { HttpInterceptor, HttpHandler, HttpRequest } from ‘@angular/common/http’;

import { AuthService } from ‘./auth.service’;

@Injectable()

export class UniversalAppInterceptor implements HttpInterceptor {

 constructor(private authService: AuthService) { }

 intercept(req: HttpRequest, next: HttpHandler) {

 const token = this.authService.getJWTToken();

 req = req.clone({

 url: req.url,

 setHeaders: {

 Authorization: `Bearer ${token}`

 }

 });

 return next.handle(req);

 }

}

Note: In the above code, AuthService is used for JWT token retrieval purposes only.

See the possibilities for yourself with live

demos of Syncfusion Angular components.
Try Now

Conclusion

In this blog, I have explained the best practices for authentication in Angular apps using

JWT tokens and the management of JWT tokens on the client side.

For Angular developers, Syncfusion offers over 65 high-performance, lightweight,

modular, and responsive Angular components to speed up development.

For current customers, the latest version of our controls is available for download from

the License and Downloads page. If you are not yet a customer, you can try our 30-

day free trial to check out all our Angular components have to offer. You can also explore

samples in our GitHub repository.

Relate blogs

Easily Create Interactive Digital Logic Circuits in Angular

Maximizing Angular Charts Performance with Lazy Loading

Easily Build an Interactive BPMN Viewer and Editor in Angular

A Full-Stack Web App Using Angular and GraphQL: Part 1

Tags:

Angular JWT Authentication JWT Tokens Webdev

Copy

Copy

Copy

Copy

Copy

Copy

Copy

Be the first to get updates

Email Address Subscribe

Copy RSS feed

MEET THE AUTHOR

Pradeep Kumar

Pradeep Kumar works as a product manager at Syncfusion,

where he specializes in the development of web components

with cutting-edge technologies. He is interested in the latest

web technologies and provides solutions for great products.

Leave a comment

You must be Logged in to post a comment.

Submit Comment

Comments (26)

Sumit Sharma

June 4, 2020 at 1:21 am

Really informative and on the point, Keep it up, brother.

View 1 reply 

Kumar Kumardeep

June 12, 2020 at 10:46 am

you don’t mention XSS at all. seems like a big vulnerability that you didn’t

address with your approach

View 1 reply 

Zigreth

July 18, 2020 at 6:04 pm

why do you create a cookie service, i mean, you say that browser cant access to

them, javascript can? and that is not dangerous?

sorry for typos.

View 4 replies 

Frontenddev

September 15, 2020 at 7:56 am

Great article. One query I had , as we know for every request we would be

adding the token using interceptor but would it not have impact on the

performance as for every request a token would be added in the headers.If it will

have performance issues then what steps can we take.

View 1 reply 

Frontenddev

September 16, 2020 at 4:52 pm

Makes sense, thanks!

Guillermo Cotilla

September 21, 2020 at 10:52 am

thenmetho isTokenExpire has error

View 4 replies 

Jyhn Dtaylor

February 20, 2021 at 5:28 pm

Hi! Thanks a lot sir! But as a beginner I will suggest you to add a video tutorial,

actually I need à login with handling token in angular! I have already set up the

the backend nestJS with login a registration systems and everything works

properly! But I don’t master well angular! So actually I will need a little help, so

that you post a video tutorial! I know how to get data from nestJS to angular by

crud ways but to have token works with every request, I know not!

View 1 reply 

Hiba

April 26, 2022 at 10:20 pm

Hi, Pradeep,

great thanks for this content… Can you show how the code for login in the

AuthService will look like , as well as the getJWTToken() function.

Regards,

Hiba

Pradeep Kumar

May 3, 2022 at 2:29 pm

Hi Hiba,

Thanks for your feedback. The getJWTToken function is exclusively used to

retrieve tokens from the AuthService. It may differ depending on how the

backend is implemented and how the token is stored.

Regards,

Pradeep Kumar B

Deniel

May 31, 2022 at 9:01 am

Could you tell me what the signIncallBack() method should look like?

View 1 reply 

Muamer

September 13, 2023 at 6:31 am

Hello @Kumar,

Thanks for the very informative article on securing Angular apps.

We are already using similar approach and some Synfusion components in our

application.

Our problem is that number of components do not consider existing

interceptors at all.

For example we utilize RichTextBrowser and FileManager componens but both

appear to go around existing interceptors when downloading image resources.

Even more, on number of forum posts Synfusion support underlined that for

some reason this will never be supported. My guess is that this is since

components are built as wrappers around native JS components.

Please advise?

Kind regards,

Muamer

Yll Rukiqi

June 21, 2024 at 7:51 am

Is still available with angular 18?

View 1 reply 

EXPLORE OUR PRODUCTS

Developer Platform

Analytics Platform

Reporting Platform

eSignature Software and API

Help Desk Software

Knowledge Base Software

GET PRODUCTS

Free Trial

Pricing

RESOURCES

Ebooks

White Papers

Case Studies

Technical FAQ

Code Examples

Accessibility

Web Stories

Webinars

SUPPORT

Community Forum

Knowledge Base

Contact Support

Features & Bugs

SLA

Product Life Cycle

LEARNING

Demos

Blog

Documentation

What’s New

Road Map

Release History

Tutorial Videos

WHY WE STAND OUT

Blazor Competitive Upgrade

Angular Competitive Upgrade

JavaScript Competitive Upgrade

React Competitive Upgrade

Vue Competitive Upgrade

Xamarin Competitive Upgrade

WinForms Competitive Upgrade

WPF Competitive Upgrade

PDF Competitive Upgrade

Word Competitive Upgrade

Excel Competitive Upgrade

PPT Competitive Upgrade

COMPANY

About Us

Customers

Blog

News & Events

Careers

Partners

CONTACT US

Fax: +1 919.573.0306

US: +1 919.481.1974

UK: +44 20 7084 6215

Toll Free (USA):

1-888-9DOTNET

sales@syncfusion.com

Privacy Policy Cookie Policy Terms of Use Security Policy Responsible Disclosure Ethics Policy

Copyright © 2001 - 2024 Syncfusion Inc. All Rights Reserved

39K+ 12K+ 15K+ 27K+

Table of Contents

Charts Component

Build stunning real world
apps using Angular Components

Contact Us

 Blogs Share

We use cookies to give you the best experience on our website. If you continue to browse, then you agree to our

privacy policy and cookie policy
OK

PRODUCTS  LEARNING & SUPPORT  PRICING COMPANY  BOOK A FREE DEMO TRY IT FREE

 Chat with us

https://www.bolddesk.com/pricing/team-based
https://www.syncfusion.com/account/login?ReturnUrl=https://www.syncfusion.com/blogs/post/best-practices-for-jwt-authentication-in-angular-apps
https://www.syncfusion.com/account/login?ReturnUrl=https://www.syncfusion.com/blogs/post/best-practices-for-jwt-authentication-in-angular-apps
https://www.syncfusion.com/account/login?ReturnUrl=https://www.syncfusion.com/blogs/post/best-practices-for-jwt-authentication-in-angular-apps
https://www.syncfusion.com/blogs/author/pradeepkumar-bose
https://jwt.io/
https://angular.io/cli/new
https://www.syncfusion.com/angular-components
https://www.syncfusion.com/angular-components
https://www.syncfusion.com/angular-components
https://www.syncfusion.com/angular-components
https://www.syncfusion.com/angular-components
https://www.syncfusion.com/angular-components
https://www.syncfusion.com/angular-components
https://www.syncfusion.com/angular-components
https://www.syncfusion.com/angular-components
https://www.syncfusion.com/angular-components
https://www.syncfusion.com/angular-components
https://ej2.syncfusion.com/angular/documentation/introduction/
https://ej2.syncfusion.com/angular/documentation/introduction/
https://ej2.syncfusion.com/angular/documentation/introduction/
https://ej2.syncfusion.com/angular/documentation/introduction/
https://ej2.syncfusion.com/angular/documentation/introduction/
https://ej2.syncfusion.com/angular/documentation/introduction/
https://ej2.syncfusion.com/angular/documentation/introduction/
https://ej2.syncfusion.com/angular/documentation/introduction/
https://ej2.syncfusion.com/angular/documentation/introduction/
https://ej2.syncfusion.com/angular/documentation/introduction/
https://ej2.syncfusion.com/angular/documentation/introduction/
https://ej2.syncfusion.com/angular/documentation/introduction/
https://www.npmjs.com/package/jwt-decode
https://ej2.syncfusion.com/home/angular.html
https://ej2.syncfusion.com/home/angular.html
https://ej2.syncfusion.com/home/angular.html
https://ej2.syncfusion.com/home/angular.html
https://ej2.syncfusion.com/home/angular.html
https://ej2.syncfusion.com/home/angular.html
https://ej2.syncfusion.com/home/angular.html
https://ej2.syncfusion.com/home/angular.html
https://ej2.syncfusion.com/home/angular.html
https://ej2.syncfusion.com/home/angular.html
https://ej2.syncfusion.com/home/angular.html
https://www.syncfusion.com/angular-components
https://www.syncfusion.com/angular-components
https://www.syncfusion.com/angular-components
https://www.syncfusion.com/angular-components
https://www.syncfusion.com/angular-components
https://www.syncfusion.com/angular-components
https://www.syncfusion.com/angular-components
https://www.syncfusion.com/angular-components
https://www.syncfusion.com/angular-components
https://www.syncfusion.com/angular-components
https://www.syncfusion.com/angular-components
https://www.syncfusion.com/angular-components
https://www.syncfusion.com/angular-components
https://www.syncfusion.com/angular-components
https://www.syncfusion.com/angular-components
https://www.syncfusion.com/angular-components
https://angular.io/guide/router#canactivate-requiring-authentication
https://angular.io/api/common/http/HttpInterceptor
https://ej2.syncfusion.com/home/angular.html
https://ej2.syncfusion.com/home/angular.html
https://ej2.syncfusion.com/home/angular.html
https://ej2.syncfusion.com/home/angular.html
https://ej2.syncfusion.com/home/angular.html
https://ej2.syncfusion.com/home/angular.html
https://ej2.syncfusion.com/home/angular.html
https://ej2.syncfusion.com/home/angular.html
https://ej2.syncfusion.com/home/angular.html
https://ej2.syncfusion.com/home/angular.html
https://www.syncfusion.com/account/downloads
https://www.syncfusion.com/downloads
https://github.com/syncfusion/ej2-angular-ui-components
https://www.syncfusion.com/blogs/post/digital-logic-circuits-angular.aspx
https://www.syncfusion.com/blogs/post/lazy-loading-angular-charts.aspx
https://www.syncfusion.com/blogs/post/create-bpmn-viewer-using-angular.aspx
https://www.syncfusion.com/blogs/post/full-stack-web-app-angular-graphql.aspx
https://www.syncfusion.com/blogs/tag/angular
https://www.syncfusion.com/blogs/tag/jwt-authentication
https://www.syncfusion.com/blogs/tag/jwt-tokens
https://www.syncfusion.com/blogs/tag/webdev
https://www.syncfusion.com/blogs/author/pradeepkumar-bose
https://www.syncfusion.com/blogs/author/pradeepkumar-bose
https://www.syncfusion.com/account/login?ReturnUrl=https://www.syncfusion.com/blogs/post/best-practices-for-jwt-authentication-in-angular-apps%23comments
https://www.syncfusion.com/products/essential-studio
https://www.boldbi.com/
https://www.boldreports.com/
https://boldsign.com/?utm_source=syncfusionnavfooter&utm_medium=referral&utm_campaign=boldsign
https://www.bolddesk.com/?utm_source=syncfusionfooter&utm_medium=referral&utm_campaign=bolddesk
https://www.bolddesk.com/knowledge-base-software
https://www.syncfusion.com/downloads
https://www.syncfusion.com/sales/products
https://www.syncfusion.com/succinctly-free-ebooks
https://www.syncfusion.com/resources/techportal/whitepapers
https://www.syncfusion.com/company/case-studies
https://www.syncfusion.com/faq/
https://www.syncfusion.com/code-examples
https://www.syncfusion.com/pages/accessibility/
https://www.syncfusion.com/web-stories/
https://www.syncfusion.com/webinars/
https://www.syncfusion.com/forums
https://support.syncfusion.com/kb
https://support.syncfusion.com/create
https://www.syncfusion.com/feedback
https://s3.amazonaws.com/files2.syncfusion.com/web/support/sla/27.2/syncfusion_software_support_sla.pdf
https://www.syncfusion.com/support/product-lifecycle
https://www.syncfusion.com/demos
https://www.syncfusion.com/blogs/
https://help.syncfusion.com/
https://www.syncfusion.com/products/whatsnew
https://www.syncfusion.com/products/roadmap
https://www.syncfusion.com/products/release-history
https://www.syncfusion.com/tutorial-videos
https://www.syncfusion.com/pages/blazor-competitive-upgrade/
https://www.syncfusion.com/pages/angular-competitive-upgrade/
https://www.syncfusion.com/pages/javascript-competitive-upgrade/
https://www.syncfusion.com/pages/react-competitive-upgrade/
https://www.syncfusion.com/pages/vue-competitive-upgrade/
https://www.syncfusion.com/pages/xamarin-competitive-upgrade/
https://www.syncfusion.com/pages/winforms-competitive-upgrade/
https://www.syncfusion.com/pages/wpf-competitive-upgrade/
https://www.syncfusion.com/pages/pdf-library-competitive-upgrade/
https://www.syncfusion.com/pages/word-competitive-page/
https://www.syncfusion.com/pages/excel-library-competitive-page/
https://www.syncfusion.com/pages/powerpoint-library-competitive-upgrade/
https://www.syncfusion.com/company/about-us
https://www.syncfusion.com/company/about-us/customerlist
https://www.syncfusion.com/blogs/
https://www.syncfusion.com/company/news-press-release
https://www.syncfusion.com/company/careers
https://www.syncfusion.com/company/partners
mailto:sales@syncfusion.com
https://www.syncfusion.com/
https://www.syncfusion.com/privacy
https://www.syncfusion.com/cookie-policy
https://www.syncfusion.com/terms-of-use
https://www.syncfusion.com/security-policy
https://www.syncfusion.com/responsible-disclosure
https://www.syncfusion.com/ethics-policy
https://www.syncfusion.com/copyright
https://www.facebook.com/Syncfusion
https://twitter.com/Syncfusion
https://www.linkedin.com/company/syncfusion?trk=top_nav_home
https://www.youtube.com/@SyncfusionInc?sub_confirmation=1
https://www.pinterest.com/syncfusionofficial/
https://www.instagram.com/syncfusionofficial/
https://www.threads.net/@syncfusionofficial
https://www.syncfusion.com/downloads/angular?tag=es-blog-angular-ad-trial
https://www.syncfusion.com/downloads/angular?tag=es-blog-angular-ad-trial
https://www.syncfusion.com/downloads/angular?tag=es-blog-angular-ad-trial
https://www.syncfusion.com/company/contact-us
https://www.syncfusion.com/blogs
https://www.syncfusion.com/privacy
https://www.syncfusion.com/cookie-policy
https://www.syncfusion.com/
https://www.syncfusion.com/
https://www.syncfusion.com/sales/products
https://www.syncfusion.com/request-demo
https://www.syncfusion.com/downloads

