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TL;DR: Shield your Angular apps with JWT authentication! Unveils secure

storage practices, route protection with guards, and interceptor-based token

injection for seamless API calls – empowering robust user authentication.

Unlock best practices for JWT in Angular and fortify your app’s security.

Data without security is like a treasure box without a lock. In this tech-driven world,

hackers are everywhere. To transmit your data’s securely, you need highly reliable

standards. Considering this, JSON Web Tokens (JWT) provide the best security and

authentication.

Angular is a widely used JavaScript platform. In this blog, we are going to see how to

implement authenticated routings in Angular, manage tokens, and pass tokens to

servers in client side. For logins, you can use any kind of authentication like OpenID,

OAuth, or create your own login application logic.

This blog covers the following topics:

What is JWT?

What are the possibilities of storing JWT authentication tokens in Angular apps?

Where can tokens be stored securely in Angular apps?

How to create a service to access JWT tokens and storage?

How to protect Angular routing with stored JWT tokens?

How to pass a JWT token for every API request?

What is JWT?

JSON Web Tokens (JWT) are an internet standard for creating JSON-based access tokens

that assert a number of claims. We can generate JWT with custom claims that may

contain user information and permission-based values, information like whether the

user is an admin can also be stored in JWT. Best practice is to not store any confidential

information in JWT. Please refer to jwt.io for detailed information about JWT.

Note: An Angular project can be created using Angular CLI commands. Please refer to

the Angular CLI command documentation for more information on how to create a

project.
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What are the ways to store authentication tokens in Angular

apps?

There are three possible ways of storing access tokens in an Angular app. They are:

In-memory storage

HTML5 web storage

Cookie storage

In-memory storage

In this technique, a token is stored in the application page itself. The only drawback of

this option is the data is not persistent; it is lost on page refresh and must be retrieved

again.

HTML5 web storage (local storage and session storage)

In this technique, data is stored in browser storage. Data stored this way is accessible by

all tabs in the same browser within the same domain. The two types of web storage are:

Session storage: Data stored in session expires once the browser is closed.

Local storage: Data stored in local storage doesn’t expire until we clear the data

from the browser. The server cannot directly access data stored in local storage.

Cookie storage

In this technique, a token is stored in cookies. Data stored this way can be accessed by

the server. The browser automatically appends a cookie in requests sent to the server.

Since the browser automatically adds a cookie on each request, tokens are vulnerable to

CSRF/XSRF attacks.
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Where can tokens be stored securely in Angular apps?

We can store data in different ways, but we should take proper measures to protect

tokens against CSRF and XSRF vulnerabilities. We should store tokens in a place that is

not accessible by attackers. Two possible ways of storing tokens to reduce risk of

CSRF/XSRF attack are:

Local storage: One of the best ways to store data. Local storage is not

vulnerable to CSRF attacks.

HttpOnly cookie: HttpOnly cookies are not accessible on the client side, i.e. the

client cannot read data stored in these cookies.

For additional security, we must consider a few more things on the server side, such as:

Token expiration validation.

Content security policy.

Refresh token mechanism.

Anti-forgery token mechanism.

How to create a service to access JWT tokens and storage

Now that we have learned where to store tokens, let’s see how to create an Angular

service to decode stored tokens and retrieve values from them in an Angular app.

JWT token service

This service is used for decoding JWT tokens and retrieving values from JWT. Let’s set one

up.

First, create an Angular service file for JWT decode and inject it in the application module.

We can use the jwt-decode package for decoding JWT tokens. In this service, functions for

getting user claim values like username and email ID have been included. A function has

also been added for checking token expiration in this service.

import { Injectable } from '@angular/core';

import * as jwt_decode from 'jwt-decode';

@Injectable()

export class JWTTokenService {

    jwtToken: string;

    decodedToken: { [key: string]: string };

    constructor() {

    }

    setToken(token: string) {

      if (token) {

        this.jwtToken = token;

      }

    }

    decodeToken() {

      if (this.jwtToken) {

      this.decodedToken = jwt_decode(this.jwtToken);

      }

    }

    getDecodeToken() {

      return jwt_decode(this.jwtToken);

    }

    getUser() {

      this.decodeToken();

      return this.decodedToken ? this.decodedToken.displayname : null;

    }

    getEmailId() {

      this.decodeToken();

      return this.decodedToken ? this.decodedToken.email : null;

    }

    getExpiryTime() {

      this.decodeToken();

      return this.decodedToken ? this.decodedToken.exp : null;

    }

    isTokenExpired(): boolean {

      const expiryTime: number = this.getExpiryTime();

      if (expiryTime) {

        return ((1000 * expiryTime) - (new Date()).getTime()) < 5000;

      } else {

        return false;

      }

    }

}

To store the token, you can use either a cookie or local storage service. Code examples

for implementing the services are provided below. Depending on where you are storing

tokens, cookie or local storage service can be implemented.

Be amazed exploring what kind of

application you can develop using

Syncfusion Angular components.

Try Now

Cookie service

1. Create an Angular service file AppCookieService and inject it in the application

module.

2. Include the get, set, and remove functions to perform cookie operations.

3. Include the functionality to automatically add the cookie on initialization of the

service.

import { Inject, Injectable } from '@angular/core';

@Injectable({

    providedIn: 'root',

  })

export class AppCookieService {

    private cookieStore = {};

    constructor() {

        this.parseCookies(document.cookie);

    }

    public parseCookies(cookies = document.cookie) {

        this.cookieStore = {};

        if (!!cookies === false) { return; }

        const cookiesArr = cookies.split(';');

        for (const cookie of cookiesArr) {

            const cookieArr = cookie.split('=');

            this.cookieStore[cookieArr[0].trim()] = cookieArr[1];

        }

    }

    get(key: string) {

        this.parseCookies();

        return !!this.cookieStore[key] ? this.cookieStore[key] : null;

    }

    remove(key: string) {

      document.cookie = `${key} = ; expires=Thu, 1 jan 1990 12:00:00 UTC; path=/`;

    }

    set(key: string, value: string) {

        document.cookie = key + '=' + (value || '');

    }

}

Local storage service

1. Create an Angular service file LocalStorageService and inject it in the

application module.

2. In this basic local storage, add get, set, and remove functions for performing the

operations.

import { Injectable } from '@angular/core';

@Injectable()

export class LocalStorageService {

    set(key: string, value: string) {

        localStorage.setItem(key, value);

    }

    get(key: string) {

        return localStorage.getItem(key);

    }

    remove(key: string) {

        localStorage.removeItem(key);

    }

}
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How to protect Angular routing with stored JWT tokens

So far, we have learned about JWT tokens, where to store them, and how to access and

pass them to the server using Angular services. Now, we are going to see how to use

these tokens to protect Angular routing.

Before diving into this topic, we have to understand the routing guard canActivate.

{

    path: 'app',

    component: AppComponent,

    canActivate: [AuthorizeGuard]

}

The above routing configuration is protected by the AuthorizeGuard service.

AuthorizeGuard supports ‘Boolean | Promise | Observable’. If the AuthorizeGuard

returns false/Promise reject/Observable error, then routing won’t happen. We need to

resolve the error for the routing configuration to be successful.

AuthorizeGuard service

The guard service in the sample code below checks whether the user is logged in. If the

user is logged in, then it checks whether the token is expired. If both cases are satisfied,

then the routing process will be successful. Otherwise, it will request the login service to

get a new token or redirect the user to a custom login or access denied page.

import { Injectable } from '@angular/core';

import { CanActivate, ActivatedRouteSnapshot, RouterStateSnapshot } from '@angular/rout

import { Observable } from 'rxjs'; 

import { JWTTokenService } from './jwt-token.service';

import { LocalStorageService } from './storage.service';

import { LoginService } from './login.service';

@Injectable({

  providedIn: 'root'

})

export class AuthorizeGuard implements CanActivate {

  constructor(private loginService: LoginService,

              private authStorageService: LocalStorageService,

              private jwtService: JWTTokenService) {

  }

  canActivate(

    next: ActivatedRouteSnapshot,

    state: RouterStateSnapshot): Observable | Promise | boolean {

      if (this.jwtService.getUser()) {

          if (this.jwtService.isTokenExpired()) {

            // Should Redirect Sig-In Page

          } else {

            return true;

          }

      } else {

        return new Promise((resolve) => {

          this.loginService.signIncallBack().then((e) => {

             resolve(true);

          }).catch((e) => {

            // Should Redirect Sign-In Page

          });

        });

      }

  }

}

Note: In the above code, logInService is used for login resolution purposes only. You can

create your own service to resolve logins.

How to pass a JWT token for every API request

In order to have authenticated calls with APIs, we have to send the authorization token in

every HTTP request being sent to the server so that the server can verify authentication

of the request. It’s difficult to include code to add a token in every place an API call is

made—it causes code duplication. To remedy this, Angular has an interceptor service for

handling all HTTP requests and responses in a single place. By using this interceptor, we

can handle including an authentication token in every API call globally.

How the interceptor works

HttpInterceptor controls all the HTTP requests and responses. Every request and

response comes and goes through this service, so we can easily append custom headers

containing authorization tokens in a single place.

Override HTTP_INTERCEPTORS as shown in the following app module.

{ provide: HTTP_INTERCEPTORS, useClass: UniversalAppInterceptor, multi: true },

HttpInterceptor service

The interceptor intercepts all Angular HTTP requests and adds authorization headers

with the token.

Process of using authorization headers with a token

import { Injectable, Inject, Optional } from ‘@angular/core’;

import { HttpInterceptor, HttpHandler, HttpRequest } from ‘@angular/common/http’;

import { AuthService } from ‘./auth.service’;

@Injectable()

export class UniversalAppInterceptor implements HttpInterceptor {

  constructor( private authService: AuthService) { }

  intercept(req: HttpRequest, next: HttpHandler) {

    const token = this.authService.getJWTToken();

    req = req.clone({

      url:  req.url,

      setHeaders: {

        Authorization: `Bearer ${token}`

      }

    });

    return next.handle(req);

  }

}

Note: In the above code, AuthService is used for JWT token retrieval purposes only.

See the possibilities for yourself with live

demos of Syncfusion Angular components.
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Conclusion

In this blog, I have explained the best practices for authentication in Angular apps using

JWT tokens and the management of JWT tokens on the client side.

For Angular developers, Syncfusion offers over 65 high-performance, lightweight,

modular, and responsive Angular components to speed up development.

For current customers, the latest version of our controls is available for download from

the License and Downloads page. If you are not yet a customer, you can try our 30-

day free trial to check out all our Angular components have to offer. You can also explore

samples in our GitHub repository.
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Really informative and on the point, Keep it up, brother.
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you don’t mention XSS at all. seems like a big vulnerability that you didn’t

address with your approach
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why do you create a cookie service, i mean, you say that browser cant access to

them, javascript can? and that is not dangerous?
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Great article. One query I had , as we know for every request we would be

adding the token using interceptor but would it not have impact on the

performance as for every request a token would be added in the headers.If it will

have performance issues then what steps can we take.
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Hi! Thanks a lot sir! But as a beginner I will suggest you to add a video tutorial,

actually I need à login with handling token in angular! I have already set up the

the backend nestJS with login a registration systems and everything works

properly! But I don’t master well angular! So actually I will need a little help, so

that you post a video tutorial! I know how to get data from nestJS to angular by

crud ways but to have token works with every request, I know not!
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great thanks for this content… Can you show how the code for login in the

AuthService will look like , as well as the getJWTToken() function.
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Hiba

Pradeep Kumar

May 3, 2022 at 2:29 pm

Hi Hiba,

Thanks for your feedback. The getJWTToken function is exclusively used to

retrieve tokens from the AuthService. It may differ depending on how the

backend is implemented and how the token is stored.
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Could you tell me what the signIncallBack() method should look like?
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Hello @Kumar,

Thanks for the very informative article on securing Angular apps.

We are already using similar approach and some Synfusion components in our

application.

Our problem is that number of components do not consider existing

interceptors at all.

For example we utilize RichTextBrowser and FileManager componens but both

appear to go around existing interceptors when downloading image resources.

Even more, on number of forum posts Synfusion support underlined that for

some reason this will never be supported. My guess is that this is since

components are built as wrappers around native JS components.

Please advise?

Kind regards,

Muamer
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June 21, 2024 at 7:51 am
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